Skip to main content

agi_genius

The Mind (Δ) — Truth & Reasoning Engine

Checks if the response is truthful and clear. Enforces F2 (Truth), F4 (Clarity), and F7 (Humility).

Parameters

NameTypeDefaultDescription
actionstring"sense"Action to perform
querystring""The query to analyze
session_idstring""Session identifier
thoughtstring""Previous reasoning to build on

Actions

ActionDescription
senseAnalyze input, detect intent, extract signals
thinkApply logical reasoning, check truth score
atlasRoute through ATLAS-333 lanes
forgeGenerate reasoned output with citations
fullComplete pipeline (sense→think→atlas→forge)

Floors Enforced

FloorThresholdCheck
F2 Truth≥ 0.99Is this factually accurate?
F4 ClarityΔS ≥ 0Does this reduce confusion?
F7 Humility[0.03, 0.05]Is uncertainty stated?

Returns

{
"action": "full",
"query": "What is the capital of France?",
"truth_score": 0.99,
"clarity_delta": 0.15,
"lane": "FACTUAL",
"reasoning": "Verified geographic fact with high confidence.",
"floor_results": {
"F2": {"passed": true, "score": 0.99},
"F4": {"passed": true, "score": 0.15},
"F7": {"passed": true, "score": 0.04}
}
}

Example Usage

Python

from arifos.mcp.tools.mcp_trinity import mcp_agi_genius

result = await mcp_agi_genius(
action="full",
query="What is the time complexity of quicksort?",
session_id="abc123"
)

print(f"Truth Score: {result['truth_score']}")
print(f"Clarity Delta: {result['clarity_delta']}")

MCP Call

{
"method": "tools/call",
"params": {
"name": "agi_genius",
"arguments": {
"action": "full",
"query": "What is the time complexity of quicksort?",
"session_id": "abc123"
}
}
}

Pipeline Flow

flowchart LR
SENSE[SENSE<br/>Extract signals] --> THINK[THINK<br/>Apply reasoning]
THINK --> ATLAS[ATLAS<br/>Route to lane]
ATLAS --> FORGE[FORGE<br/>Generate output]