agi_genius
The Mind (Δ) — Truth & Reasoning Engine
Checks if the response is truthful and clear. Enforces F2 (Truth), F4 (Clarity), and F7 (Humility).
Parameters
| Name | Type | Default | Description |
|---|---|---|---|
action | string | "sense" | Action to perform |
query | string | "" | The query to analyze |
session_id | string | "" | Session identifier |
thought | string | "" | Previous reasoning to build on |
Actions
| Action | Description |
|---|---|
sense | Analyze input, detect intent, extract signals |
think | Apply logical reasoning, check truth score |
atlas | Route through ATLAS-333 lanes |
forge | Generate reasoned output with citations |
full | Complete pipeline (sense→think→atlas→forge) |
Floors Enforced
| Floor | Threshold | Check |
|---|---|---|
| F2 Truth | ≥ 0.99 | Is this factually accurate? |
| F4 Clarity | ΔS ≥ 0 | Does this reduce confusion? |
| F7 Humility | [0.03, 0.05] | Is uncertainty stated? |
Returns
{
"action": "full",
"query": "What is the capital of France?",
"truth_score": 0.99,
"clarity_delta": 0.15,
"lane": "FACTUAL",
"reasoning": "Verified geographic fact with high confidence.",
"floor_results": {
"F2": {"passed": true, "score": 0.99},
"F4": {"passed": true, "score": 0.15},
"F7": {"passed": true, "score": 0.04}
}
}
Example Usage
Python
from arifos.mcp.tools.mcp_trinity import mcp_agi_genius
result = await mcp_agi_genius(
action="full",
query="What is the time complexity of quicksort?",
session_id="abc123"
)
print(f"Truth Score: {result['truth_score']}")
print(f"Clarity Delta: {result['clarity_delta']}")
MCP Call
{
"method": "tools/call",
"params": {
"name": "agi_genius",
"arguments": {
"action": "full",
"query": "What is the time complexity of quicksort?",
"session_id": "abc123"
}
}
}
Pipeline Flow
flowchart LR
SENSE[SENSE<br/>Extract signals] --> THINK[THINK<br/>Apply reasoning]
THINK --> ATLAS[ATLAS<br/>Route to lane]
ATLAS --> FORGE[FORGE<br/>Generate output]